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Abstract. The hexagonal and cubic phases of K3Sb are semiconductors with a band gap of less
than 1 eV but optical absorption measurements indicate a band gap which is much larger. This
study presents band structure calculations which explain the difference in the band gap values found
from conductivity measurements and optical absorption data. Although the experimental values
seem to be in conflict, the calculated band structure provides the crucial information to bring the
experimental data into agreement.

1. Introduction

The alkali pnictides are an interesting class of compounds with good properties for potential
use in thin film applications. The low surface free energies of both constituents are ideal for the
growth of flat and smooth films and the band gaps range from∼0.1 eV up to 2.5 eV depending
on the structure and chemical composition. These compounds appear in two structures: a
hexagonal Na3As structure (space groupP63/mmc) and a face centred cubic structure (space
groupFm3m) [1]. The alkali antimonides have a long history as optically active materials
[2, 3].

Most of the alkali pnictides have one stable crystal structure at room temperature, either
the hexagonal Na3As structure or the cubic structure. However K3Sb appears to be stable
in both forms at room temperature. The cubic phase has a brown colour and the hexagonal
phase is purple. Upon annealing to higher temperatures cubic K3Sb makes a transition to the
hexagonal phase [3].

Although the alkali antimonides are widely applied because of their good photoemissive
and optical properties, the electronic bandstructure has not been studied yet. In this paper we
present electronic bandstructure calculations of the cubic and hexagonal phases of K3Sb and
discuss the optical properties.

2. Crystal structures

The hexagonal structure has been determined by Brauer and Zintl [4]. This structure is rather
common for the group of alkali pnictides, and called the Na3As structure [5]. The space group
of this structure isP63/mmc (No 194), or D4

6h in Schoenflies notation [6]. The unit cell axes
area = 6.037 Å andc = 10.717 Å. The antimonide occupies the 2c position with coordinates
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±(1/3, 2/3, 1̄/4), the potassium occupies the 2b position±(0, 0, 1/4) and the 4f position
±(1/3, 2/3, u; 2/3, 1/3, u+1/2)with positional parameteru = 0.583. The antimonide atoms
have a fivefold coordination in trigonal bipyramids in this structure. The K–Sb distances in
the plane of the bipyramid are 3.485 Å and the two K–Sb bonds perpendicular to this plane are
3.572 Å long. A positional parameter for the K atoms at the 4f position of 0.575 would have
yield five equal K–Sb distances, therefore the antimony coordination is slightly Jahn–Teller
distorted. A hard sphere representation of the trigonal bipyramid is shown in figure 1.

Figure 1. The trigonal bipyramidal coordination of Sb in this structure. The large white spheres
represent the potassium atoms and the small black sphere the Sb atom.

The cubic phase has the face centred space groupFm3m (No 225), or O4
h in Schoenflies

notation [3]. The unit cell contains four K3Sb units (Z = 4) and has an axis of length
a = 8.493 Å. The antimonide atoms occupy the 4a position(0, 0, 0), and the potassium atoms
occupy the 4b(1/2, 1/2, 1/2) and the 8c±(1/4, 1/4, 1/4) positions. This cubic structure
has about 10% denser packing and appears to be more stable for the heavier elements. The
antimony atoms have a cubic coordination with the eight potassium atoms at the corners and
the antimony atom in the centre. Each antimony atom is surrounded by eight potassium atoms
at a distance of 3.678 Å and six potassium atoms at a distance of 4.247 Å. A hard sphere
representation of the antimony coordination is shown in figure 2.

3. Bandstructure calculations

The calculations were performed with the localized spherical wave (LSW) method [7]. This
method is a modified version of the augmented spherical wave (ASW) method [8]. Exchange
and correlation were treated within the local spin density approximation [9]. Scalar relativistic
effects were included [10]. In the LSW method the radial parts of the wave functions
are described by a numerical solution of the Schrödinger equation within the spheres and
augmented by Hankel functions outside the spheres. On neighbouring spheres the Hankel
functions are expanded in series of Bessel functions centred on the neighbouring spheres.
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Figure 2. The cubic CsCl coordination of Sb in this structure. The large white spheres represent
the potassium atoms and the small black sphere the Sb atom.

Around each atom a cluster is formed with wave functions that fall off rapidly with increasing
distance from the central atom.

The basis functions of the K sites were composed of s and p Hankel functions and s, p and
d Bessel functions representing the 4s, 4p and 3d states. The basis functions for the antimony
atoms were s, p and d Hankel functions and s, p, d and f Bessel functions. The calculations
for the hexagonal phase required us to include empty spheres to fill the space in the unit cell.
Empty spheres were placed at the 2a position(0, 0, 0) of the corresponding space group. The
input parameters of the calculations are shown in tables 1 and 2.

Table 1. Input parameters for the calculation of the hexagonal phase of K3Sb.

Atom Position Start configuration Sphere radius

K 2b±(0, 0, 1/4) [Ar]4s1 4p0(3d0) 2.238 Å
K 4f ±(1/3, 2/3, 0.583; 2/3, 1/3, 0.083) [Ar]4s1 4p0(3d0) 2.238 Å
Sb 2c±(1/3, 2/3, 1/4) [Kr]5s2 5p3 5d0 2.114 Å
Empty sphere 2a(0, 0, 0; 0, 0, 1/2) 1s02p0 1.119 Å

Table 2. Input parameters for the calculation of the cubic structure of K3Sb.

Atom Position Start configuration Sphere radius

K 8c±(1/4, 1/4, 1/4) [Ar]4s14p03d0 2.091 Å
K 4b (1/2, 1/2, 1/2) [Ar]4s14p03d0 2.091 Å
Sb 4a(0, 0, 0) [Kr]5s25p35d0 2.091 Å

4. Results

The dispersion of the electron bands calculated for the hexagonal structure is shown in figure 3.
The energy, the symmetry and the main orbital character of the bands in the centre (0) of the
Brillouin zone (BZ) are given in table 3. The bands with an energy higher than 6.2 eV are
omitted. The partial and total density of states is given in figure 4.

The lowest bands at−7.4 eV and−7.3 eV are sharp and dominated by the Sb 5s states.
The small dispersion of about 0.1 eV indicates that these bands are rather localized.



762 A R H FEttema and R A de Groot

Figure 3. Dispersion of the electron bands along high symmetry lines in the Brillouin zone for the
hexagonal structure of K3Sb. The energy of the bands is given in eV relative to the Fermi level.

Table 3. Energy, symmetry [11] and main orbital character of the electron bands in the centre of
the Brillouin zone of the hexagonal structure of K3Sb.

Energy (eV) Symmetry Orbital character

−7.39 0+
1 Sb 5s

−7.31 0−4 Sb 5s
−1.24 0+

3 Sb 5pz
−0.14 0−2 Sb 5pz
−0.06 0+

6 Sb 5pxy
−0.04 0−5 Sb 5pxy

0.21 0+
1 K 4s

2.18 0−4 K 4s
3.06 0+

3 K 4pz
4.19 0−5 K 4pxy
4.44 0−2 K 4pz
4.98 0+

6 K 4pxy
5.20 0+

5 K 4pxy
5.90 0+

1 K 4s
6.14 0−2 K 4pz

The bands between−2 eV and the Fermi level are mainly composed by the Sb 5p orbitals.
Although there is some degree of covalency which is also expressed in the partial density of
states, the Sb 5p states are the main constituent for the valence band.

The lowest conduction band is a high symmetry band of K 4s states. The density of the
conduction band states is appreciable from 1.5 eV to higher energies; between 1.5 eV and
0.2 eV this high symmetry K 4s band has considerable dispersion near the centre of the BZ.
Because only one band with much dispersion is present between 0.2 eV and 1.5 eV above the
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Figure 4. Partial and total density of states distribution of hexagonal K3Sb. The energy is given
in eV relative to the Fermi level.

Fermi level, the density of states is very small in this region. At higher energies bands are
present with main orbital character of K 4s, K 4p and Sb 5d.

The optical properties of solids are to a large extent influenced by symmetry. The symmetry
of the initial state and the dipole operator determine the symmetry of the final states for a dipole
allowed transition. The dipole operator has symmetry representation0−5 for light polarized in
the plane of the hexagonal layers. The reduction of the direct product of the0−5 representation
with the Sb 5p valence band representations yields irreducible representations of the K 4s and
the K 4pxy bands listed in table 3. The K 4pz bands with the representations0+

3 and0−2 do not
have the correct symmetry for a dipole allowed transition from the Sb 5p valence band states.
For light polarized perpendicular to the hexagonal plane the symmetry is0−2 and the possible
final states for optical transitions from the Sb 5p valence bands have symmetry0+

1, 0−4 , 0+
5 or

0−6 . In the optical region the accessible conduction bands are dominated by the K 4s states.
The cubic structure has a smaller primitive cell with only one K3Sb unit and has therefore

fewer bands in the first BZ. The dispersions of the electron bands along the high symmetry
directions are shown in figure 5. The energy, symmetry and main orbital character is given in
table 4. The partial and total density of states are drawn in figure 6.

The lowest valence band has an energy of−7.4 eV below the Fermi level and is also
dominated by the Sb 5s states. Again, this state shows hardly any dispersion indicating its
localized character.

The valence band just below the Fermi level is threefold degenerate and composed of the
Sb 5p states with a small amount of K 4s states. The total width of the valence band is only
1.6 eV. But these bands have considerable dispersion in the X and L direction, which are the
bonding directions for the Sb atoms.

The lowest conduction band has an energy of 0.59 eV above the Fermi level at the0 point
in reciprocal space. This band is a high symmetry band made up mainly of K 4s states. Also
for this cubic phase the dispersion of this state contributes very modestly to the density of
states below an energy of 1.5 eV above the Fermi level.
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Figure 5. Dispersion of the electron bands along high symmetry lines in the Brillouin zone for the
cubic structure of K3Sb. The energy of the bands is given in eV relative to the Fermi level.

Table 4. Energy, symmetry and main character of the electron bands in the centre of the Brillouin
zone of the cubic structure of K3Sb.

Energy (eV) Symmetry Orbital character

−7.40 0+
1 Sb 5s

0.00 0−4 Sb 5p
0.59 0+

1 K 4s
4.51 0−4 K 4p
6.74 0−4 K 4p
7.69 0+

3 Sb 5d (eg)
7.92 0+

2 K 4s
10.5 0+

1 K 4s
15.1 0+

5 Sb 5d (t2g)
15.2 0−4 K 4p

The second and the third band above the Fermi level are both threefold degenerate and
dominated by the K 4p orbitals. The Sb 5d states are split into eg and t2g levels at0 with
energies of 7.7 eV and 15.1 eV above the Fermi level respectively.

The symmetry of the dipole operator and the Sb 5p valence band states determine the
symmetry of possible final states in a dipole transition. The representation of the dipole
operator is0−4 and the representation of the initial state is0−4 in the centre of the BZ. The
reduction of the direct product of these two representations gives:

0−4 ⊗ 0−4 = 0+
1 ⊗ 0+

3 ⊗ 0+
4 ⊗ 0+

5 . (1)

The final state of a dipole allowed transition is therefore given by the bands that consists of
the K 4s and the Sb 5d states.
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Figure 6. Partial and total density of states distribution of cubic K3Sb. The energy is given in eV
relative to the Fermi level.

5. Discussion and conclusion

The calculated energies of band gaps with atomic sphere approximation methods, like the
LSW method, have only a relative meaning because these energies are generally not in
accordance with experimental values to high accuracy. An underestimation of the gap is
frequently observed in these self-consistent band-structure calculations of semiconductors
[12, 13]. Nevertheless, the calculated band gaps for the hexagonal (Eg = 0.25 eV) and cubic
(Eg = 0.59 eV) phase compared with experimental conductivity versus temperature data are
in a reasonable agreement. The band gap energies found from conductivity measurements are
0.23 eV and 0.79 eV for the hexagonal and cubic structure respectively [14].

The calculated density of states shows that for the hexagonal phase the absorption starts
at photon energies of 0.25 eV with a modest intensity; the absorption is likely to get stronger
at higher photon energies of about 1.5 eV. The limited density of the valence band states at an
energy of 0.5 eV below the Fermi level between the two peaks can cause a reduced absorption
at photon energies of about 2.5 eV. This seems to agree with the observed purple colour of
the hexagonal phase and the minimum in the experimental light absorption curves measured
by Sommer and McCarroll [3] and Spicer [15]. The estimated band gap values from these
optical measurements for the hexagonal and cubic phases are 1.1 eV and 1.4 eV respectively.
Although these absorption data [3, 15] seem to be in conflict with the conductivity data [14],
from the band structure calculations presented here they are in perfect agreement. The low
density of states at the bottom of the conduction band causes only a weak light absorption in
the infra-red region of the spectrum.

In conclusion we can state that the calculated band structure explains the discrepancy
between the optical absorption data and conductivity measurements. The band gap of both
phases is rather small but light absorption is not very strong in the infrared region of the
spectrum.



766 A R H FEttema and R A de Groot

References

[1] Pohl R and Pringsheim P 1910Verh. Phys. Ges.121041
[2] Görlich P 1936Z. Phys.101340
[3] Sommer A H and Carroll W H 1966J. Appl. Phys.37174
[4] Brauer G and Zintl E 1937Z. Phys. Chem.B 37323
[5] Wyckoff R W G 1960Crystal Structuresvol 2 (New York: Wiley)
[6] 1969International Tables for X-ray Crystallography(Birmingham: Kynoch)
[7] van Leuken H, Lodder A, Czyzyk M T, Springelkamp F and de Groot R A 1990Phys. Rev.B 415613
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